Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.08.31.555819

Résumé

EG.5.1 is a subvariant of the SARS-CoV-2 Omicron XBB variant that is rapidly increasing in prevalence worldwide. EG.5.1 has additional substitutions in its spike protein (namely, Q52H and F456L) compared with XBB.1.5. However, the pathogenicity, transmissibility, and immune evasion properties of clinical isolates of EG.5.1 are largely unknown. In this study, we used wild-type Syrian hamsters to investigate the replicative ability, pathogenicity, and transmissibility of a clinical EG.5.1 isolate. Our data show that there are no obvious differences in growth ability and pathogenicity between EG.5.1 and XBB.1.5, and both EG.5.1 and XBB.1.5 are attenuated compared to a Delta variant isolate. We also found that EG.5.1 is transmitted more efficiently between hamsters compared with XBB.1.5. In addition, unlike XBB.1.5, we detected EG.5.1 virus in the lungs of four of six exposed hamsters, suggesting that the virus tropism of EG.5.1 is different from that of XBB.1.5 after airborne transmission. Finally, we assessed the neutralizing ability of plasma from convalescent individuals and found that the neutralizing activity against EG.5.1 was slightly, but significantly, lower than that against XBB.1.5 or XBB.1.9.2. This suggests that EG.5.1 effectively evades humoral immunity and that the amino acid differences in the S protein of EG.5.1 compared with that of XBB.1.5 or XBB.1.9.2 (i.e., Q52H, R158G, and F456L) alter the antigenicity of EG.5.1. Our data suggest that the increased transmissibility and altered antigenicity of EG.5.1 may be driving its increasing prevalence over XBB.1.5 in the human population.

2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.08.26.505450

Résumé

The prevalence of the Omicron subvariant BA.2.75 is rapidly increasing in India and Nepal. In addition, BA.2.75 has been detected in at least 34 other countries and is spreading globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs was higher than that of BA.2 and BA.5. Of note, BA.2.75 caused focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which was not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicated better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 and should be closely monitored.


Sujets)
Maladies de l'appareil respiratoire , Adénocarcinome bronchioloalvéolaire , Pneumopathie infectieuse
3.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1820048.v1

Résumé

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern (VOC). Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral infectivity, raising concerns that the infectivity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here, we evaluated the replicative ability and pathogenicity of authentic BA.4 and BA.5 isolates in wild-type Syrian hamsters and human ACE2 (hACE2) transgenic hamsters. In contrast to recent data with a recombinant chimeric virus possessing the spike protein of BA.4/BA.5 in the background of a BA.2 strain, we observed no obvious differences among BA.2, BA.4, and BA.5 isolates in growth ability or pathogenicity in hamsters, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2. Our study highlights the importance of using authentic isolates when evaluating virological features.

4.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1375091.v1

Résumé

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.


Sujets)
COVID-19
5.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1240227.v1

Résumé

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. A new SARS-CoV-2 variant, designated Omicron, first identified in South Africa and possess many spike protein mutations. Here, we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against an Omicron variant in Syrian hamsters. Of the mAbs tested (i.e., REGN10987/REGN10933, COV2-2196/COV2-2130, and S309), only COV2-2196/COV2-2130 efficiently inhibited the replication of the Omicron variant in the lungs of hamsters. We also found that treatment of Omicron-infected hamsters with molnupiravir (an inhibitor of the RNA-dependent RNA polymerase of SARS-CoV-2) or S-217622 (an inhibitor of the main protease of SARS-CoV-2) led to a dramatic reduction of virus replication in the lungs. These findings suggest that treatment with the mAb combination COV2-2196/COV2-2130 or the antiviral compounds molnupiravir and S-217622 may be effective against the Omicron variants.


Sujets)
Infections à coronavirus
6.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1211792.v1

Résumé

Despite the development and deployment of antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. The recent emergence of B.1.1.529, the Omicron variant1,2, which has more than 30 mutations in the spike protein, has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling and binding data suggesting that B.1.1.529 spike can bind more avidly to murine ACE2, we observed attenuation of infection in 129, C57BL/6, and BALB/c mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. Although K18-hACE2 transgenic mice sustained infection in the lungs, these animals did not lose weight. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from multiple independent laboratories of the SAVE/NIAID network with several different B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Sujets)
Maladies de l'appareil respiratoire , Maladies pulmonaires , Maladies transmissibles
SÉLECTION CITATIONS
Détails de la recherche